
Contextual Concurrency Control

Sujin Park Irina Calciu Taesoo Kim Sanidhya Kashyap

2

Operating systems Cloud services Data processing
systems

Databases

Synchronization mechanisms
Basic building block for designing applications

Locks in everywhere!

Locks are critical for application performance

3

threads

O
pe

ra
tio

ns
 /

 s
ec

on
d

Typical application performance on a multicore machine

Locks are critical for application scalability

4

Linear sc
alability

Far from ideal

Typical application performance on a manycore machine

threads

O
pe

ra
tio

ns
 /

 s
ec

on
d

One lock cannot rule all of them!

5

of thread

1 10 20 30 40 50 60 70 80
0

0.2
0.4
0.6

0.8
1

1.2

Stock

BRAVO

Read-intensive workload

Evolving hardware

Various applications & requirements

Specialization bridges the semantic gap

6

KernelApplications
Semantic Gap

!

Specialization bridges the semantic gap

7

KernelApplications
Semantic Gap

Specialization😃

Storage

Network

Accelerator

Synchronization

Can we tune lock policy on the fly?

8

Contextual Concurrency Control

New paradigm to tune synchronization mechanism

from user space

Need for user-defined locks on the fly

9

Lock implementations are application agnostic

Only few locks contend for a given application

May need a variant of a lock based on the workload

CONCORD Framework

10

Lock implementations are application agnostic

➞ Let application developers to tune locks in the kernel on the fly

Only few locks contend for a given application

➞ Modify set of locks at various granularities

May need a variant of a lock based on the workload

➞ Exposes set of APIs to modify lock algorithms

CONCORD Overview
User Kernel

Grouping node from same socket

Example :

policy

sock 1 sock 3 sock 6 sock 1

lock waiters in queue

11

move if true

❶ User create

lock policy

bool cmp_node(node* pre, node* cur){

return (pre->sock == cur->sock) ;

}

CONCORD Overview
User Kernel

policy Verifier

12

➞ Lock shouldn’t be changed arbitrary

➞ Only whitelisted functions can be called

➞ No hanging policy

ü memory access

ü helper functions

ü code termination

❷ Load the policy ❸ Verify given

lock policy

❶ User create

lock policy

CONCORD Overview
User Kernel

policy Verifier

13

➞ Lock shouldn’t be changed arbitrary

➞ Only whitelisted functions can be called

➞ No hanging policy

ü memory access

ü helper functions

ü code termination

❷ Load the policy ❸ Verify given

lock policy

❶ User create

lock policy

bool cmp_node(node* pre, node* cur){

return (pre->sock == cur->sock) ;

}

Read allowed for pre, cur ?

Function
call?

Any loop
in policy?

CONCORD Overview

❷ Load the policy ❸ Verify given

lock policy
policy

User Kernel

❹ Create patch to specify

target point
Patched locking

function

❺ Patch locking function
to run with given policy

Verifier

14

policy

❶ User create

lock policy

• All spinlocks in the kernel

• Spinlocks used in filesystem

• A spinlock used in an inode

Reordering waiters

• bool cmp_node(lock, node, node){}

• bool skip_shuffle(lock, node){}

Profiling

• void lock_acquire(lock){}

• void lock_contended(lock){}

• void lock_acquired(lock){}

• void lock_release(lock){}

Safety and APIs

15

Fine-grained lock profiling

Increase critical section

Flexibility to change lock on the fly

Fairness

Ensure mutual exclusion & safe from crashing

Usecase

16
1. Avoiding Scheduler Subversion using Scheduler–Cooperative Locks. Eurosys’20

Lock Waiting queue Lock Waiting queue

…

holds lock x3 longer

will receive x3 much CPU time!

…
t1 t2

will receive fair CPU time

competing for same lock

penalized: have less opportunity to grab a lock

Scheduler-Cooperative Locks1

Usecase

17

Lock Waiting queue Lock Waiting queue

…

holds lock x3 longer

will receive x3 much CPU time!

…
t1 t2

will receive fair CPU time

competing for same lock

1. Avoiding Scheduler Subversion using Scheduler–Cooperative Locks. Eurosys’20

Let application developers enforce this fairness only when needed

Will this fairness always beneficial?

penalized: have less opportunity to grab a lock

Scheduler-Cooperative Locks1

• Overhead of CONCORD-lock compared to pre-compiled lock

• Almost negligible overhead (And now we can change lock on the fly!)

Overhead of CONCORD

18

of thread
1 10 20 30 40 50 60 70 80

0

0.2

0.4

0.6

0.8

1

1.2

O
ps

/m
se

c

BRAVO lock

• Kernel locks are critical for application performance and scalability
• Out of the reach of application developers

• C3 : Contextual Concurrency Control
• Let userspace application to fine tune concurrency control

• CONCORD Framework
• Exposes a set of APIs

• Apply to specific target locks (instead of all locks in the kernel)
• Change locks on the fly with minimal overhead

Conclusions

19

